肖特基二極管
新型高壓SBD的結構和材料與傳統(tǒng)SBD是有區(qū)別的。傳統(tǒng)SBD是通過金屬與半導體接觸而構成。金屬材料可選用鋁、金、鉬、鎳和鈦等,半導體通常為硅(Si)或砷化鎵(GaAs)。由于電子比空穴遷移率大,為獲得良好的頻率特性,故選用N型半導體材料作為基片。為了減小SBD的結電容,提高反向擊穿電壓,同時又不使串聯(lián)電阻過大,通常是在N+襯底上外延一高阻N-薄層。其結構示圖如圖1(a),圖形符號和等效電路分別如圖1(b)和圖1(c)所示。在圖1(c)中,CP是管殼并聯(lián)電容,LS是引線電感,RS是包括半導體體電阻和引線電阻在內的串聯(lián)電阻,Cj和Rj分別為結電容和結電阻(均為偏流、偏壓的函數)。 大家知道,金屬導體內部有大量的導電電子。當金屬與半導體接觸(二者距離只有原子大小的數量級)時,金屬的費米能級低于半導體的費米能級。在金屬內部和半導體導帶相對應的分能級上,電子密度小于半導體導帶的電子密度。因此,在二者接觸后,電子會從半導體向金屬擴散,從而使金屬帶上負電荷二極管的特性,半導體帶正電荷。由于金屬是理想的導體,負電荷只分布在表面為原子大小的一個薄層之內。而對于N型半導體來說,失去電子的施主雜質原子成為正離子,則分布在較大的厚度之中。電子從半導體向金屬擴散運動的結果,形成空間電荷區(qū)、自建電場和勢壘二極管的特性,并且耗盡層只在N型半導體一邊(勢壘區(qū)全部落在半導體一側)。勢壘區(qū)中自建電場方向由N型區(qū)指向金屬,隨熱電子發(fā)射自建場增加,與擴散電流方向相反的漂移電流增大,最終達到動態(tài)平衡,在金屬與半導體之間形成一個接觸勢壘,這就是肖特基勢壘。
文章由啟和科技編輯